
The past 30 years have seen two major shifts in the prevailing
technology paradigm. In the late 1980s and early 1990s,
client-server applications became the accepted state-of-the-art.
These combined the benefits of shared central resources –

typical of the older mainframe world – with the local computing resources
of increasingly powerful desktop machines. Typical applications involved a
‘fat client’ with a server database. Most of the analytical heavy lifting took
place on the client, while the server provided a shared database utility. The
major drawback of this approach for enterprise
applications was the need to undertake co-ordi-
nated rollout of any updates to the fat applica-
tion on multiple, often far-flung, client
machines.

The rise of the internet in the late 1990s
ushered in the ‘thin’ client paradigm we know
today. Client machines did not require special-
ised applications. All that was needed was a
generic application capable of parsing and
interpreting self-describing files on the server,
displaying their content appropriately and
providing facilities for users to respond as desired
to centrally generated messages and queries
– what we all know today as a browser.

These two approaches share one common
feature, however – namely, a broad reliance on
relational databases for many types of structured
data storage and retrieval. Within the framework
of their table definitions, these databases enabled
highly complex queries to access, filter, sort,
group and otherwise manipulate data in a very
flexible fashion. In this sense, relational databases
and structured query language represented a
huge advance. They were the culmination of
years of trial-and-error development of database
management systems.

Relational databases continue to be a powerful and effective tool in an
environment where the structure of an underlying dataset is stable. Where
they fall short is in dealing with a dynamic environment where the
underlying data structure itself is unstable and subject to frequent
revisions. In the context of trading activities, market data conventions tend
to be comparatively stable. It is primarily trade terms and conditions that
evolve in response to competitive forces. Accommodating such changes
requires modifications to table structures that can have knock-on effects
for existing applications that process pre-existing trades. For this reason,

new trade types are often not immediately and smoothly accommodated
in existing trading and risk systems. This creates side pockets of special
processing that often fail to be included in broader enterprise risk systems.

One part of the path forward involves abandoning the relational
database paradigm for electronic storage of trade terms and conditions.
The alternative is to represent trades via self-describing documents
consisting of key-value pairs. This still requires a semantic structure in the
spirit of FpML and similar XML-type representations. Using such a

document store for recording and accessing trades
introduces radical modularity into this dimension of the
process. It is also a means of accommodating inconsist-
ent relational database structures in multiple front- and
middle-office trading systems. In effect, each trading
system can continue to function on its own, providing
it generates self-describing documents for each of the
transactions it has booked. In this way, each trading
system is responsible for maintaining its own trade
document store, but the union of all these trade
documents provides a modular representation of all
trades that can be analysed at the enterprise level.

This type of system naturally lends itself to modular
and massively parallelisable valuation routines that can
be distributed to multiple nodes. There would have to be
a central registry of documents similar to domain name
servers for the internet. All this registry need contain,
however, is a document ID and location. A separate
metadata index records key/value pairs (or, in some
cases, ranges of numerical values linked to certain keys
such as ‘TradeValue’) and the document IDs in which
they appear. This allows efficient identification of
relevant documents, serving a function similar to, but on
a much smaller scale than, Google’s massive web index.

Of course, web search need only be suggestive, not
definitive. An enterprise-wide risk management system
would have to be much more complete and precise in

its indexing. The index also has to evolve as new trade types and additional
trade characteristics are developed. The point, however, is that none of this
added indexing needs to affect pre-existing documents or create secondary
impacts on existing analytic routines.

In effect, rather than trying to reform their universally fragmented data
and analytical environments, financial institutions should look beyond the
relational database mentality and embrace emerging technologies for
search and massive parallelisation that lie behind our everyday experience
with the internet. R

David Rowe is senior strategist for risk

and regulation at Misys in London.

Email: david.rowe@misys.com

50 Risk February 2014

Risk analysis: David Rowe

Beyond relational databases
Data and analytical fragmentation have been risk management obstacles for decades, but efforts to overcome the problem have been
rooted within the paradigm of relational databases. David Rowe argues moving beyond this framework holds the key to success

“One part of the path forward
involves abandoning the
relational database paradigm
for electronic storage of trade
terms and conditions”

Risk 0214 Rowe.indd 50 29/01/2014 14:24

